Problem 5

Find the curve $y=f(x)$ such that $f(x) \geq 0, f(0)=0, f(1)=1$, and the area under the graph of f from 0 to x is proportional to the $(n+1)$ st power of $f(x)$.

Solution

$$
\underbrace{\int_{0}^{x} f(t) d t}_{\text {er the graph of } f \text { from } 0 \text { to } x} \underbrace{\propto}_{\text {is proportional to }} \underbrace{[f(x)]^{n+1}}_{\text {the }(n+1) \text { st power of } f(x)}
$$

To change the proportionality to an equation, we must introduce a constant of proportionality, k.

$$
\int_{0}^{x} f(t) d t=k[f(x)]^{n+1}
$$

To remove the integral from the equation, differentiate both sides with respect to x and use the fundamental theorem of calculus, which says that

$$
\begin{gathered}
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \\
\frac{d}{d x}\left[\int_{0}^{x} f(t) d t\right] \\
=\frac{d}{d x}\left\{k[f(x)]^{n+1}\right\} \\
f(x)=
\end{gathered} \begin{aligned}
& k(n+1)[f(x)]^{n} \cdot f^{\prime}(x)
\end{aligned}
$$

Now separate variables.

$$
\begin{aligned}
k(n+1) f^{n} \frac{d f}{d x} & =f \\
f^{n-1} d f & =\frac{d x}{k(n+1)}
\end{aligned}
$$

Integrate both sides.

$$
\frac{f^{n}}{n}=\frac{x}{k(n+1)}+C
$$

Now we can plug in the boundary conditions to determine the two constants.

$$
\begin{aligned}
& f(0)=0 \quad \rightarrow \quad \frac{0^{n}}{n}=\frac{0}{k(n+1)}+C \quad \rightarrow \quad C=0 \\
& f(1)=1 \quad \rightarrow \quad \frac{1^{n}}{n}=\frac{1}{k(n+1)} \quad \rightarrow \quad k=\frac{n}{n+1}
\end{aligned}
$$

With these constants,

$$
f^{n}=x
$$

Therefore,

$$
f(x)=\sqrt[n]{x}
$$

